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Objective: The aim of this study was to evaluate the effect of yacon flour on iron and zinc nutritional
status and immune response biomarkers in preschool children.
Methods: Preschool children ages 2 to 5 y were selected from two nurseries and were placed into a
control group (n ¼ 58) or a yacon group (n ¼ 59). The yacon group received yacon flour in
preparations for 18 wk at a quantity to provide 0.14 g of fructooligosaccharides/kg of body weight
daily. Anthropometric parameters were measured before and after the intervention and dietary
intake was measured during the intervention. To assess iron and zinc status, erythrograms, serum
iron, ferritin, and plasma, and erythrocyte zinc were evaluated. Systemic immune response was
assessed by the biomarkers interleukin IL-4, IL-10, IL-6, and tumor necrosis factor-alfa (TNF-a).
Intestinal immune response was analyzed by secretory IgA (sIgA) levels before and after the
intervention. Statistical significance was evaluated using the paired t test (a ¼ 5%).
Results: Before and after the study, the children presented a high prevalence of overweight and an
inadequate dietary intake of zinc and fiber. The yacon group presented with lower hemoglobin,
mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration at the end of the
study (P < 0.05). Erythrocyte zinc was reduced in both groups at the end of the study (P < 0.05).
Yacon intake increased the serum levels of IL-4 and fecal sIgA (P < 0.05). The control group had
lower serum TNF-a after the study period (P < 0.05).
Conclusion: Yacon improved intestinal immune response but demonstrated no effect on the
nutritional status of iron and zinc in preschool children.

� 2014 Elsevier Inc. All rights reserved.
Introduction

Yacon (Smallanthus sonchifolius) originates from the Andean
region and has spread across South America and Europe. In
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fructooligosaccharides (FOS) and can contain 40% to 70% of its
FOS in its root dry matter [1,2].

FOS are fructose oligosaccharides joined by b-(2/1)
or b-(2/6) bonds with a prebiotic role [1]. Prebiotics are
non-digestible but fermentable oligosaccharides specifically
designed to change the composition and affect the activity of one
or a limited number of bacteria of the intestine, with the goal of
promoting the health of the host [3]. In the colon, FOS acts as
a substrate for the growth of beneficial bifidobacteria and lac-
tobacilli [4].

Recently, great interest has been focused on the positive ef-
fects of dietary fructooligosaccharides on mineral bioavailability.
Studies involving humans indicate that they promote greater
mineral bioavailability [5–7]. In agreement with these findings,
studies performed in animals demonstrated changes in the
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Table 1
Profile of the study population, anthropometric parameters, and nutritional status of preschool children in the yacon and control groups before and after intervention

Yacon
n ¼ 41

Control
n ¼ 48

Age (mo) 47 � 13 41 � 11
Sex (%)
Male 53 54
Female 47 46

Before After Before After

Anthropometric parameters
Weight (kg) 17.85 � 3.93 18.75 � 4.29* 16.39 � 2.85 17.25 � 3.17*
Height (cm) 104.33 � 10.14 107.65 � 10.0* 99.96 � 7.73 103.42 � 7.59*
BMI (kg/m2) 16.32 � 1.94 16.06 � 2.02* 16.32 � 1.38 16.04 � 1.66

Nutritional status (%)
Slimness 2.08 2.08 2.44 4.88
Eutrophic 62.50 64.58 58.54 60.98
Risk for overweight 22.92 16.67 29.27 24.39
Overweight 12.50 16.67 9.76 7.32
Obesity/severe obesity 0.00 0.00 0.00 2.44

BMI, body mass index
Values are means � SD

* Paired-samples t test comparing each group before versus after; P < 0.05.
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intestinal architecture with dietary FOS treatment: Increases in
intestinal crypt number, depth, and bifurcations and in the
production of short-chain fatty acids, and a decrease in luminal
pH [8,9]. Particularly, these three types of effects can be the main
reasons for better mineral absorption, which increases their
bioavailability [10–12].

Nutritional deficiencies of micronutrients, mainly iron and
zinc, are common in preschool-aged children [13]. Lack of certain
micronutrients, especially zinc and iron, can lead to clinically
significant immunodeficiency and infections in children. Thus, in
this group the addition of prebiotic food can increase mineral
bioavailability and strengthen the immune system.

Fructan consumption can increase immune system efficiency
[14]. In animals, yacon flour ingestion stimulates the local
immune response by increasing the levels of secretory immu-
noglobulin A (sIgA), interleukin IL-10, and IL-4. Its immuno-
modulatory effect may be indirect, by influencing the growth of
bifidobacteria and lactobacilli, or through a direct interaction
with the immune system [4]. However, to our knowledge, there
are few studies about the effects of FOS on the immune response
in humans [14].

In this context, the aim of this study is to evaluate the effects
of yacon on the iron and zinc nutritional state and immune
response in preschool children.

Methods

Participants

One hundred seventeen preschool children ages 2 to 5 y from two full-time
public nurseries were recruited for this study. The childrenwere submitted to an
initial blood sampling after the consent of their parents or guardians. The
exclusion criteria were hemoglobin <11 mg/dL and the use of ferrous sulfate,
vitamins, or mineral supplements. Children from one nursery were placed in the
control group (n¼ 58), whereas the other group received yacon flour (n¼ 59) for
18 wk. The children were evaluated for anthropometric and biochemical pa-
rameters and local and systemic immune response (Fig. 1). General characteris-
tics of the children are presented in Table 1. The study was approved by the Ethics
Committee on Human Subject of the Federal University of Viçosa, MG, Brazil,
protocol number 028/2012, and by the local education secretary.

Obtaining the yacon flour

Two hundred kg of yacon was purchased weekly from a rural producer of
Santa Maria do Jetib�a, Esp�ırito Santo, Brazil. After selecting, washing, sanitizing,
and peeling, the tubercle was processed and immersed in a citric acid solution
(0.5%) for 10 min as adapted from an earlier method [15]. After this procedure, it
was dried (24 h at 60�C) in an airflow dryer (Polidryer). The flour was stored in
plastic bags, 2 to 5 kg each, at a temperature of �10�C. The FOS content was
determined as indicated previously [16]. The levels of protein, carbohydrates,
lipids, fiber, ash, and humidity were evaluated using AOAC method [17].

Dietary intervention

The children in the yacon group received yacon for 18 wk in amounts to
provide 0.14 g FOS/kg body weight daily [18], which was calculated according to
the mean body weight of each school class and the yacon flour FOS level. To
enhance the yacon acceptability, it was offered in preparations such as candy (fed
after lunch and prepared with yacon, water, and milk powder), cake, and cookies
(fed at breakfast time). The preparations were offered daily (Monday through
Friday). The offered preparations and the leftovers were weighed daily to eval-
uate the acceptability. Parents and teachers were asked about the possible
presence of adverse effects throughout the intervention period.

The caloric content of the preparations was calculated based on the chemical
composition of the yacon flour and other ingredients, using the Avanutri pro-
gram, version 1.0 for Windows.

Dietary assessment

For dietary assessment, the food consumption average of 3 nonconsecutive
d was evaluated by direct food weighing method and 24-h recall. The foods
ingested at the nurseries were weighed on 2 non-consecutive weekdays [19].
Food portions were weighed on a digital portable scale of 2-kg capacity and 1-g
precision. The number of repeats and the leftovers were recorded. Meals fed at
home were evaluated by 24-h recall based on information provided by the
children’s guardians on the same weekday of the direct food weight in the
nurseries and on a weekend day. Food composition was analyzed by using Ava-
nutri. The adequacy of macronutrients was evaluated based on the acceptable
macronutrient distribution range (AMDR), and micronutrients based on the
estimated average requirement (EAR) or adequate intake [20,21].

Anthropometric assessment

The weight and height of the children were determined according to a pre-
vious method [22] before and after dietary intervention. For weight measure-
ments, an electronic digital portable scale (150 kg capacity and 50 g precision)
was used. A stadiometer was used for height measurement. These parameters
were used to calculate the bodymass index for age (BMI/A), whichwas compared
with the reference z score and classified according to the World Health Organi-
zation recommendations [23].

Hematologic evaluation

Samples of bloodwere collected by venous puncture. The bloodwas analyzed
for red blood cells (RBCs), hematocrit (Htc), hemoglobin (Hb) concentration,
mean cell volume (MCV), mean cell hemoglobin (MCH), and mean cell hemo-
globin concentration (MCHC). Serum was taken for ferritin and iron



Table 2
Composition of yacon flour

Composition (%) Yacon flour

Protein 4.52
Humidity 5.92
Lipids 0.33
Ash 2.94
Total carbohydrates 86.29
Fiber 10.68
Fructooligosaccharides 35.06

Fig. 1. Experimental design.
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determinations. RBCs were counted manually using a Neubauer chamber [24].
Hb and serum iron (sFe) were measured using colorimetric Bioclin kits. Serum
ferritin (sF) was determined by immunoturbidimetry, and glucose was evaluated
by a commercial colorimetric assay. Zinc was measured in plasma and erythro-
cytes by atomic absorption spectrophotometry [25,26]. The biochemical pa-
rameters were evaluated before and after the dietary intervention.

Fecal samples

Parents were asked to take fecal samples from their children before and after
the intervention period. Parents collected the samples in feces containers, stored
them immediately in their home freezer, and took the samples to the nursery on
the day after collection. During the collection period, the investigators visited the
nursery regularly to collect fecal samples. Fecal samples were transported to the
laboratory in an icebox and stored at �80�C.

Systemic and local immune biomarkers

Flow-cytometric multiplex arrays were used to evaluate proinflammatory
cytokines (IL-6 and TNF-a) and anti-inflammatory cytokines (IL-10 and IL-4) in
serum samples with Luminex technology using the kit CAT # HCYTOMAG-60 K-
04 (Millipore), and the concentrations were determined in a MagPix Analyzer
with the software xPonent/Analist, version 4.2.

To evaluate intestinal immune response, sIgA was quantified. For the deter-
mination of sIgA, 10% (w/v) fecal homogenates were prepared according to
standard procedures. Fecal samples were defrosted on ice. Suspensions were
made by adding 1 g feces to 9mL of phosphate-buffered saline and homogenizing
for 10 min using a vortex. The mucosal immunity was evaluated based on the
fecal sIgA concentration, which was measured using an Immunochron enzyme-
linked immunosorbent assay (ELISA).

Data analysis

The parameters before and after the intervention were evaluated using the
paired t test or Wilcoxon test (a ¼ 5%), according to the normality of the sample
distribution as evaluated by the Kolmogorov-Smirnov test. The data were
analyzed using SPSS, version 19.0 (IBM SPSS Statistics Base, DMSS, S~ao Paulo, SP,
Brasil).

Results

Population characteristics

The preschool children displayed similar age, sex, anthropo-
metric measurements and nutritional characteristics in both
groups before the study. Most children in both groups had an
adequate nutritional status, although a relatively high preva-
lence of children at risk for overweight or children already
overweight was found (Table 1).
Intervention with yacon

The yacon flour demonstrated high amounts of FOS (35.06%),
carbohydrate, and fiber (Table 2). The preparations had low
caloric values (candy: 30 kcal; cake: 80 kcal; cookie: 90 kcal) and
contained 6, 7, or 9 g flour yacon, according to the child’s body
weight.

The total average consumption of FOS was 0.09 � 0.04 g/kg
body weight. In all, 55% of children had an average daily intake
between 0.10 and 0.15 g/kg, 33% had an average daily intake
between 0.05 and 0.09 g/kg, and 12% had an average daily intake
of 0.01 to 0.04 g/kg. The children demonstrated no adverse ef-
fects at this level of FOS intake. The preparations were well
accepted by the children (candy: 81.06%; cake: 78.53%; cookie:
73.75%).
Nutrient intake

A high percentage of the children ages 4 to 5 y presented
inadequate dietary zinc intake. This result was observed in both
the yacon group (40.6%) and control group (34.7%). The observed



Table 3
Daily dietary intake of energy and nutrients of preschool children during the intervention

Nutrients Yacon
n ¼ 41

Control
n ¼ 31

Median intake % Inad Median intake % Inad

Carbohydrates (g)
2–3 y 181.87 (101.55–256.52) 2.4 157.36 (85.68–353.34) 3.2
4–5 y 172.48 (82.76–225.87) 4.9 167.28 (149.43–219.76) 0

Proteins (g)
2–3 y 43.24 (23.45–62.09) 2.4 41.58 (32.65–95.15) 3.2
4–5 y 38.64 (23.87–104.85) 0 46.32 (34.01–69.75) 0

Lipids (g)
2–3 y 35.55 (19.44–50.72) 36.6 32.39 (17.45–82.54) 51.6
4–5 y 32.84 (20.03–46.25) 17.1 35.52 (25.33–35.52) 12.9

Fibers (g)
2–3 y 11.38 (6.70–19.43) 88.8 11.77 (5.68–21.87) 90.47
4–5 y 12.89 (5.38–23.32) 100 12.37 (8.69–17.03) 100

Iron (mg)
2–3 y 6.78 (4.97–9.81) 0.52 7.5 (3.93–15.37) 2.65
4–5 y 7.31 (4.57–11.80) 2.50 7.16 (4.94–11.3) 1.6

Zinc (mg)
2–3 y 4.77 (3.99–6.00) 0.00 5.44 (4.51–7.6) 0.04
4–5 y 3.93 (2.99–5.96) 40.6 5.30 (4.76–6.91) 34.7

% Inad, percentage of inadequacy in the group
Values are median (minimum–maximum)
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fiber intake was inadequate in both groups and stage of life,
ranging from an 88.8% to a 100% inadequacy rate (Table 3).

Anthropometric parameters

The children demonstrated weight gain and increased height
after the intervention in both groups. Comparing BMI before and
after intervention, there was a decrease in the yacon group but
no difference in the control group. Before and after the study, a
high percentage of children were classified as eutrophic, but
there was a high prevalence of risk for overweight and actual
overweight at both times (Table 1).

Blood parameters of iron and zinc

There was no difference in RBC, serum iron, ferritin, hemat-
ocrit, or MCV between before and after the intervention in the
yacon group. However, Hb, MCH, andMCHC decreased at the end
of the study in that group. No change in these parameters was
seen in the control group. Plasma zinc was not affected by the
intervention. Erythrocyte zinc decreased after the intervention in
both groups (Table 4).
Table 4
Blood parameters of preschool children in yacon and control groups before and after

Blood parameters Yacon

Before After P-

Htc (%) 36.65 � 4.16 35.17 � 2.36
sFe (mg/dL) 60.85 � 30.43 66.44 � 24.26
sF (mg/L) 32.91 � 24.65 26.74 � 28.96
RBC (P/mm3) 4.22 � 0.57 4.29 � 0.93
Hb (g/dL) 13.32 � 1.64 11.13 � 1.63 <

MCV (fL) 88.26 � 13.67 85.55 � 18.46
MCH (pg) 31.92 � 4.12 26.81 � 5.68 <

MCHC (g/dL) 36.57 � 4.57 31.86 � 5.52 <

plZn (mg/dL) 103.48 � 18.24 113.61 � 27.13
eriZn (mg/gHb) 35.68 � 10.10 29.74 � 9.11 <

eriZn, erythrocyte zinc; Hb, hemoglobin; Htc, hematocrit; MCH, mean corpuscular
corpuscular volume; plZn, plasma zinc; RBCs, red blood cells; sF, ferritin; sFe, serum

* Paired-samples t test comparing each group before versus after; P < 0.05.
Systemic and local immune biomarkers

We found increased serum IL-4 but no alterations in IL-10, IL-
6, or TNF-a in the yacon group after the intervention. In the
control group, there was a reduction of TNF-a at the end of the
study (before: 24.16 � 2.27 pg/mL; after: 13.13 � 1.03 pg/mL)
(Fig. 2). After the intervention, there was an increase in fecal sIgA
in the yacon group (before: 1125.64 � 403.99 mg/mL; after:
2406.49 � 686.40 mg/mL), but not in controls (before:
3379.74 � 616.09 mg/mL; after: 2357.87 � 500.45 mg/mL) (Fig. 3).
Discussion

Microbiota is an essential constituent of gut defense. The
composition of intestinal microbiota does not change signifi-
cantly after infancy. However, various dietary and environmental
factors, infections, and antibiotics cause changes in the micro-
biota throughout the childhood. One of the most important
modulators of the gut microbiome is diet [27]. Compared with
probiotics, prebiotics may have a different or more pronounced
influence on the infant’s intestinal metabolism, because they are
substrate for fermentation [28]. Then, the insertion of prebiotics
intervention

Control

value* Before After P-value*

0.078 35.32 � 3.00 35.00 � 2.61 0.636
0.474 89.00 � 69.04 60.91 � 32.44 0.061
0.322 35.98 � 26.98 28.10 � 33.73 0.399
0.699 4.46 � 0.59 4.26 � 0.84 0.343
0.05 13.55 � 2.54 12.99 � 1.86 0.380
0.495 80.28 � 10.72 84.91 � 16.98 0.263
0.05 30.85 � 6.81 31.29 � 6.46 0.825
0.05 38.41 � 6.64 37.12 � 4.91 0.475
0.107 145.60 � 37.47 136.14 � 52.67 0.393
0.05 47.58 � 12.86 38.85 � 7.66 <0.05

hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MCV, mean
iron. Values are means � SD



Fig. 2. IL, interleukin; TNF, tumor necrosis factor n ¼ 25 (test group); n ¼ 25 (control group). *Paired-samples t test comparing each group before versus after; P < 0.05.
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in food school programs to preschool children, can stimulate the
growth and activity of beneficial microorganisms in intestine
environment with an important role in the intestinal mucosal
defense system and moreover, could be benefit to increase the
bioavailability of minerals, preventing common mineral de-
ficiencies in this stage of life [6,7,29,30].

Yacon, an abundant source of FOS, is considered a prebiotic.
We found high FOS content in the yacon flour offered to pre-
school children (35.06%) compared with others studies [15,18].
FOS is fermented selectively by bifidobacteria and lactobacilli,
which are probiotic bacteria [2]. Therefore, the addition of yacon
root to children’s diets presents a potential opportunity to
stimulate the growth of health-promoting bacteria and exert
beneficial effects on the gut immune system.

Bifidobacteria naturally inhabit the human gastrointestinal
tract and can exert several beneficial effects to the host [31].
Elements of the gut microbiota are thought to be required for the
proper development of the host’s immune system. There is evi-
dence that the gut microbiota exerts a key role in inducing IgA
production, as well as maintaining the homeostasis of several T-
cell populations, including regulatory T cells and T-helper
cells [32].
Fig. 3. sIgA, secretory immunoglobulin A n ¼ 18 (test group); n ¼ 19 (control
group). *Paired-samples t test comparing each group before versus after; P < 0.05.
The sIgA and innate mucosal defenses are the first line of
defense against microbial antigens in the intestinal mucosa. The
sIgA inhibits the colonization of pathogenic bacteria in the gut
and the mucosal penetration of pathogens [33,34]. IL-4 is an
immunomodulatory cytokine secreted by activated T lympho-
cytes, basophils, and mast cells. It plays an important role in
modulating the balance between pro- and anti-inflammatory
responses [35]. The increase in circulating proinflammatory
cytokines triggers immune cells to release anti-inflammatory
cytokines to down-regulate the immune response, through
complex feedbackmechanisms, tomaintain homeostasis [36,37].

Our results are in line with studies that found that FOS
increased fecal sIgA concentration and serum IL-4, showing the
importance of adding FOS to children’s diets. A study performed
in preschool children reported an increase of salivary sIgA after
probiotic supplementation [33]. One study [38] reported that
oligofructose and inulin stimulate natural killer cell activity and
increase the phagocytic capacity of macrophages in mice. It has
been demonstrated [4] that FOS modulated the intestinal im-
mune response in animals that consumed yacon flour, by
increasing IgA, IL-10, and IL-4 on the intestinal lamina propria.
There was an increase in IL-4 producing cells in the intestine,
mainly mast cells. In this case, the role of mast cells at the mu-
cosa level is related to adaptive response or antigen clearance
more than in the mediation of allergic process whose response is
restricted to allergen structure.

Considering the increase in the IL-4 production in the chil-
dren receiving yacon flour, a higher IL-10 levels would be ex-
pected because both cytokines have an anti-inflammatory role,
although this was not observed. The possible reason for this
result is the evaluation of systemic instead of local IL-10 levels. In
the intestine, IL-10 is produced by regulatory T cells, T-effector
cells, macrophages, dendritic cells, and epithelial cells [39]. It has
been experimentally demonstrated that the intake of FOS in-
creases the IL-10 and interferon (IFN)-g production for cells in
the Peyer’s patches, which suggests that prebiotic activates
different subpopulations of T lymphocytes and/or dendritic cells
of the intestinal tract [14]. Furthermore, this workwas developed
with a preschool population, then to ensure safety of dietary the
intervention, our group adopted the smallest daily dose of FOS
(0.14 g/kg) that has no reported intestinal discomfort in humans
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[18]; however it may not have been sufficient to promote the
expected systemic IL-10 production.

Iron and zinc are important nutrients for the immune system.
They have a high prevalence of deficiency in children [13]. Human
studies have evaluated the positive effects of FOS on the bioavail-
abilityofminerals, especially calcium[5,6]. Animal studies showan
increase in iron absorption with yacon administration [8,9]. FOS
consumption decreases the cecum pH and increases production of
short-chain fattyacids, promoting intestinal changes and increases
in the number and bifurcation of crypts, which might favor iron
absorption due to an intestinal surface increase.

We found no positive effect of yacon on iron nutritional status.
Because the sample was composed of non-anemic children, the
absorption ability probably was reduced, which can contribute to
these results. It has been reported that there is an inverse corre-
lation between serum iron concentration and iron absorption. The
mechanism of iron absorption in the large intestine has not yet
been clarified. However, sufficient iron is absorbed in the large
intestine of rats recovering from iron-deficiency anemia [40].
Additionally, there is an increased demand for Hb to support
growth in children. In preschool children, a study that offered fer-
mentedmilk fortifiedwith iron and a probiotic found a decrease in
Hb at the end of the intervention [41]. The authors related the re-
sults to the faster growth ratio in the probiotic group; the same
result was obtained in the present study in Hb levels.

The decrease in erythrocyte zinc observed in both groups in
this work may reflect a deficiency in the intake of this mineral
in the long term. The evaluation of erythrocyte zinc does not
reflect recent changes in the level of zinc, so it is the most
appropriate indicator to evaluate the nutritional status of this
mineral [42]. Between the ages of 4 and 5 y, there is an increased
nutritional need for zinc. However, we found an inadequate
intake of zinc, an important factor that contributes to nutritional
deficiency, in children in this age group.

To our knowledge, no other study has used yacon as a source
of FOS for children, and there is still no consensus about the
amount needed to improve mineral bioavailability without
adverse effects to the individual. Preschool children have high
mineral needs due to rapid growth, so the addition of only pre-
biotics to the diet, in the administered dose, without additional
dietary sources of iron and zinc was not sufficient to improve
their nutritional status.

The present study found that, although yacon did not improve
the nutritional status of iron and zinc in preschool children, it
promoted immunologic effects, with higher production of sgA
and IL-4. The clinical consequences of the immunomodulation
mediated by prebiotic supplementation are less fever, fewer
gastrointestinal and respiratory infections, and less atopic
dermatitis at an early age [28,43,44]. However, it should be
emphasized that although the well-proven effect of prebiotics
has been described in infants, more clinical studies are necessary
in older children [45].

Yacon is a promising source of prebiotic FOS to be included in
children’s diets with potential health benefits, considering the
effects in the local and systemic immune response. Further
studies should be carried out to evaluate the mechanisms asso-
ciated with the intestinal environment.
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